Planetary Ball Mills meet and exceed all requirements for fast and reproducible grinding to analytical fineness. They are used for the most demanding tasks in the laboratory, from routine sample processing to colloidal grinding and advanced materials development.
In a planetary ball mill, each jar represents a “planet”. This planet is located on a circular platform, the so-called sun wheel. When the sun wheel turns, the jar rotates around its own axis, but in the opposite direction. Thus, centrifugal and Coriolis forces are activated, leading to a rapid acceleration of the grinding balls. The result is very high pulverization energy required to produce very fine particles. The enormous acceleration of the grinding balls from one wall of the jar to the other produces a strong impact effect on the sample material and leads to additional size reduction effects through friction.
For colloidal milling and most other applications, the ratio between the speed of the sun wheel and the speed of the grinding jar is 1: -2. This means that during one rotation of the sun wheel, the grinding jar rotates twice in the opposite direction. This speed ratio is very common for Planetary Ball Mills in general. Planetary ball mills with higher energy input and a speed ratio of 1:-2.5 or even 1:-3 are mainly used for mechanochemical applications.
A bolygó golyósmalmokat puha, kemény, törékeny és szálas anyagok porítására használják száraz és nedves üzemmódban. A rendkívül nagy centrifugális erők nagyon nagy porlasztási energiát és ezáltal rövid feldolgozási időt eredményeznek. A bolygógolyós malmok kiválóan alkalmasak olyan kutatási feladatokra, mint a mechanokémia (mechanoszintézis, mechanikai ötvözés és mechanokatalízis), vagy a nanométeres skálán történő ultrafinom kolloid őrlés, valamint olyan rutinfeladatokra, mint a keverés és homogenizálás. Egy másik alkalmazási terület a társkristályok szűrése, pl. a gyógyszeriparban. A bolygó golyósmalmok döntő előnye a nagyfokú sokoldalúságuk. Különböző számú őrlőállomással kaphatók. A tégelyek és golyók különböző méretekben és anyagokból állnak rendelkezésre.
szennyvíziszap
mészkő
lapis lazuli
karotin
If, for example, a sample is analyzed for its heavy-metal content, the abrasion of steel grinding jar and balls might introduce chromium into the sample which would lead to falsified analysis results. Therefore, a metal-free material like zirconium oxide should be selected. Another point to consider is the influence of the tool on the grinding efficiency. Here two aspects are important:
The energy input grows with increasing density of a material. If the material of the grinding jars and balls has a high density, like tungsten carbide, acceleration of the grinding balls is higher at a given speed compared to materials of lower density. This means the energy input is higher when the ball hits the sample and, consequently, the crushing effect is higher with dense materials. This effect is beneficial for pulverizing hard-brittle samples.
For soft sample materials, on the other hand, too much energy input can prevent effective crushing. In such cases, the sample is not really pulverized into a fine powder but rather forms a layer that sticks to the jar walls and covers the grinding balls. Homogenization is not possible that way and sample recovery is difficult. For soft sample materials, other mill types, for example rotor mills, are better suited.
To find a jar and ball material with suitable hardness, the consideration is simple: The material must be harder than the sample. If the material is less hard, the grinding balls could be ground by the particles of the sample material.
It is not recommendable to use tools of different materials, e. g. a jar made of steel used with balls made of zirconium oxide. First, abrasion from both materials will influence the analytical result, and second, wear of the tools is increased.
For dry grinding, the best results are usually obtained with the so-called one-third-rule. This means, that approximately one third of the jar volume should be filled with balls. Following this rule, the smaller the balls are, the more must be taken to fill a third of the jar. Another third of the jar volume should be filled with sample material. The remaining third is free space to allow the ball movement inside to achieve the required comminution energy for fast pulverization of the sample.
Following this rule, the required crushing energy is provided while at the same time sufficient sample material is in the jars to prevent wear.
1. One third free space
2. One third sample
3. One third grinding balls
For fibrous materials, or materials which lose their volume drastically when pulverized, a higher sample filling level is advisable. Sufficient material needs to be in the jar to minimize wear. If necessary, it is possible to add more material after some minutes to maintain the minimum required volume.
1. Two third sample
2. One third grinding balls
To produce particle sizes down to 100 nm or less, wet grinding and friction is required rather than impact. This is achieved by using many small balls with a large surface and many friction points. Consequently, the one third filling level, which is recommended for dry milling processes, is exchanged by the 60 % rule, meaning that 60 % of the jar are filled with small balls. The sample amount should be approx. 30 %. First, the small balls are added to the jars (by weight!) and then the material is added and mixed. Finally, the dispersant liquid is mixed carefully.
Another rule of thumb is, that the grinding balls should be at least three times bigger than the largest sample piece. In this way it is ensured, that the balls can pulverize the sample quickly.
To find the suitable ball size for the desired final fineness, usually a factor of approximately 1000 can be applied. If a grind size of 30 µm (D90) is the objective, the most suitable ball size would be between 20 mm and 30 mm. If smaller particles are required, the balls must be removed and replaced by smaller ones for a second process step.
As larger balls could crush smaller ones, it is not advisable to combine different ball sizes in one milling process.
Nanotechnology deals with particles in a range from 1 to 100 nm. These particles possess special properties due to their size, as their surface is greatly enlarged in relation to their volume (so-called “size-induced functionalities”). Ultrafine particles are, for example, harder and more break-resistant than larger particles.
With dry grinding the particle size of a sample can only be reduced to a certain extent as small particles tend to get charged on their surfaces and agglomerate. Therefore, liquid or dispersant is used to keep the particles separated. Salt solutions are used to neutralize the surfaces charges. Long chain molecules in the liquid can keep the particles separated thanks to steric hindrance.
Due to their significantly enlarged surface in relation to the volume, small particles are drawn to each other by their electrostatic charges. Neutralization of surface charges is only possible by adding a buffer (electrostatic stabilization, left) or by adding long-chained molecules (steric stabilization, right).
A társkristályok két vagy több molekuláris komponensből álló szilárd anyagok. A társkristályok szűrése a megfelelő társképzők azonosításának folyamata, amelyek stabil és kívánatos társkristályokat képeznek egy célmolekulával. A ko-kristályok szűrése felhasználható például gyógyszerek vagy agrokémiai anyagok fizikai-kémiai tulajdonságainak, például az oldhatóságnak vagy a stabilitásnak a javítására. Egy speciális adapter segítségével a ko-kristályok szűrése bolygó golyósmalomban végezhető, eldobható üvegcsék, például 1,5 ml-es GC üvegcsék használatával. Általában néhány 3 mm-es vagy 4 mm-es acélgolyót használnak az anyagok alacsony vagy közepes sebességgel történő keveréséhez. Szükség esetén néhány µl oldószert adunk hozzá. A folyamat általában 30-120 perc alatt befejeződik. Az adapter 24 pozícióval rendelkezik, amelyek egy 16 pozíciót tartalmazó külső és egy 8 pozíciót tartalmazó belső gyűrűben vannak elhelyezve. A külső gyűrű akár 16 fiolát is befogad, így a PM 400 bolygógolyós malom használata esetén akár 64 minta egyidejű szűrését is lehetővé teszi. A belső gyűrű 8 pozíciója alkalmas különböző energiabevitellel végzett kísérletek elvégzésére, pl. mechanoszintézis kutatáshoz. Mivel a fiolák üvegből készülnek, a malom fordulatszámát körültekintően kell megválasztani, a PM 300 esetében maximum 500 fordulat/perc, a PM 100 esetében pedig 550 fordulat/perc fordulatszámot ajánlunk. A PM 400 esetében a 400 fordulat/perc maximális fordulatszám nem kritikus. Az együttkristályok szűrésénél a nagy sebesség által generált nagy energiabevitel hátrányos, mivel ez az anyagok kémiai vegyületeinek megváltozásához vezethet. Következésképpen az optimális eredmények alacsony és mérsékelt fordulatszámon érhetők el.
Aeration lids have been engineered to improve both the efficiency and safety of grinding processes in laboratory environments. They are especially beneficial when working with materials that require a controlled atmosphere—such as during wet grinding or when handling reactive substances. In such cases, the internal atmosphere, including oxygen, can be replaced by flushing the jar with an inert gas like nitrogen.
These lids also enable the introduction of gases directly into the grinding jar, which is essential for certain chemical reactions or for maintaining an inert environment. The jars can be pressurized up to 5 bar, which may help facilitate the incorporation of gas molecules into the reaction during milling.
Additionally, aeration lids allow the grinding jar to be connected directly to an analyzer—either after operation in a planetary ball mill (or in the Emax) or even during operation in the MM 500 nano or MM 500 control. This setup makes it easy to analyze gases released during grinding processes or generated by chemical reactions. The lids are equipped with inlays made from various materials—such as stainless steel, zirconium oxide, and tungsten carbide—allowing the same lid to be used with different jar types.
Planetary ball mills are used for pulverizing solid sample materials by impact and friction. The extremely high centrifugal forces result in very high pulverization energy and therefore short grinding times. Planetary ball mills are available with one, two or four grinding stations.
Planetary ball mills are used wherever highest demands are placed on speed, fineness, purity, and reproducibility. They pulverize and mix soft, medium-hard to extremely hard, brittle and fibrous materials and easily achieve grind sizes in the low micron or even in the nanometer range. They are perfectly suited for mechanochemical applications.
In the planetary ball mill, every grinding jar represents a “planet”. This planet is located on a circular platform, the so-called sun wheel. When the sun wheel turns, every grinding jar rotates around its own axis, but in the opposite direction. Thus, centrifugal and Coriolis forces are activated, leading to a rapid acceleration of the grinding balls.